Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Am Chem Soc ; 146(18): 12485-12495, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651836

RESUMEN

Understanding the mechanisms of C-H activation of alkanes is a very important research topic. The reactions of metal clusters with alkanes have been extensively studied to reveal the electronic features governing C-H activation, while the experimental cluster reactivity was qualitatively interpreted case by case in the literature. Herein, we prepared and mass-selected over 100 rhodium-based clusters (RhxVyOz- and RhxCoyOz-) to react with light alkanes, enabling the determination of reaction rate constants spanning six orders of magnitude. A satisfactory model being able to quantitatively describe the rate data in terms of multiple cluster electronic features (average electron occupancy of valence s orbitals, the minimum natural charge on the metal atom, cluster polarizability, and energy gap involved in the agostic interaction) has been constructed through a machine learning approach. This study demonstrates that the general mechanisms governing the very important process of C-H activation by diverse metal centers can be discovered by interpreting experimental data with artificial intelligence.

2.
Dalton Trans ; 53(19): 8347-8355, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38666520

RESUMEN

A fundamental understanding of the exact structural characteristics and reaction mechanisms of interface active sites is vital to engineering an energetic metal-support boundary in heterogeneous catalysis. Herein, benefiting from a newly developed high-temperature ion trap reactor, the reverse water-gas shift (RWGS) (CO2 + H2 → CO + H2O) catalyzed by a series of compositionally and structurally well-defined RhnVO3,4- (n = 3-7) clusters were identified under variable temperatures (298-773 K). It is discovered that the Rh5-7VO3,4- clusters can function more effectively to drive RWGS at relatively low temperatures. The experimentally observed size-dependent catalytic behavior was rationalized by quantum-chemical calculations; the framework of RhnVO3,4- is constructed by depositing the Rhn clusters on the VO3,4 "support", and a sandwiched base-acid-base [Rhout--Rhin+-VO3,4-; Rhout and Rhin represent the outer and inner Rh atoms, respectively] feature in Rh5-7VO3,4- governs the adsorption and activation of reactants as well as the facile desorption of the products. In contrast, isolated Rh5-7- clusters without the electronic modification of the VO3,4 "support" can only catalyze RWGS under relatively high-temperature conditions.

3.
Chemphyschem ; 25(9): e202400116, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38380870

RESUMEN

Activation and transformation of methane is one of the "holy grails" in catalysis. Understanding the nature of active sites and mechanistic details via spectroscopic characterization of the reactive sites and key intermediates is of great challenge but crucial for the development of novel strategies for methane transformation. Herein, by employing photoelectron velocity-map imaging (PEVMI) spectroscopy in conjunction with quantum chemistry calculations, the Lewis acid-base pair (LABP) of [Taδ+-Nδ-] unit in Ta2N3 - acting as an active center to accomplish the heterolytic cleavage of C-H bond in CH4 has been confirmed by direct characterization of the reactant ion Ta2N3 - and the CH4-adduct intermediate Ta2N3CH4 -. Two active vibrational modes for the reactant (Ta2N3 -) and four active vibrational modes for the intermediate (Ta2N3CH4 -) were observed from the vibrationally resolved PEVMI spectra, which unequivocally determined the structure of Ta2N3 - and Ta2N3CH4 -. Upon heating, the LABP intermediate (Ta2N3CH4 -) containing the NH and Ta-CH3 unit can undergo the processes of C-N coupling and dehydrogenation to form the product with an adsorbed HCN molecule.

4.
J Sci Food Agric ; 104(1): 257-265, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552783

RESUMEN

BACKGROUND: Phenolic endocrine-disrupting chemicals (EDCs) are widespread and easily ingested through the food chain. They pose a serious threat to human health. Magnetic solid-phase extraction (MSPE) is an effective sample pre-treatment technology to determine traces of phenolic EDCs. RESULTS: Magnetic covalent organic framework (COF) (Fe3 O4 @COF) nanospheres were prepared and characterized. The efficient and selective extraction of phenolic EDCs relies on a large specific surface and the inherent porosity of COFs and hydrogen bonding, π-π, and hydrophobic interactions between COF shells and phenolic EDCs. Under optimal conditions, the proposed magnetic solid-phase extraction-high-performance liquid chromatography-ultra violet (MSPE-HPLC-UV) based on the metallic covalent organic framework method for phenolic EDCs shows good linearities (0.002-6 µg mL-1 ), with R2 of 0.995 or higher, and low limits of detection (6-1.200 ng mL-1 ). CONCLUSION: Magnetic covalent organic frameworks (Fe3 O4 @COFs) with good MSPE performance for phenolic EDCs were synthesized by the solvothermal method. The magnetic covalent organic framework-based MSPE-HPLC-UV method was applied successfully to determine phenolic EDCs in beverage and water samples with satisfactory recoveries (90.200%-123%) and relative standard deviations (2.100%-12.100%). © 2023 Society of Chemical Industry.


Asunto(s)
Disruptores Endocrinos , Estructuras Metalorgánicas , Humanos , Estructuras Metalorgánicas/química , Cromatografía Líquida de Alta Presión , Bebidas , Extracción en Fase Sólida/métodos , Fenoles , Fenómenos Magnéticos , Agua/química , Límite de Detección
5.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569566

RESUMEN

Carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) are established prognostic biomarkers for patients with gastric cancer. However, their potential as predictive markers for neoadjuvant chemotherapy (NACT) efficacy has not been fully elucidated. METHODS: We conducted a retrospective analysis to determine values of CEA and CA19-9 prior to NACT (pre-NACT) and after NACT (post-NACT) in 399 patients with locally advanced gastric cancer (LAGC) who received intended NACT and surgery. RESULTS: Among the 399 patients who underwent NACT plus surgery, 132 patients (33.1%) had elevated pre-NACT CEA/CA19-9 values. Furthermore, either pre-NACT or post-NACT CEA /CA19-9 levels were significantly associated with prognosis (p = 0.0023) compared to patients with non-elevated levels. Moreover, among the patients, a significant proportion (73/132, 55.3%) achieved normalized CEA/CA19-9 following NACT, which is a strong marker of a favorable treatment response and survival benefits. In addition, the patients with normalized CEA/CA19-9 also had a prolonged survival compared to those who underwent surgery first (p = 0.0140), which may be attributed to the clearance of micro-metastatic foci. Additionally, the magnitude of CEA/CA19-9 changes did not exhibit a statistically significant prognostic value. CONCLUSIONS: Normalization of CEA/CA19-9 is a strong biomarker for the effectiveness of treatment, and can thus be exploited to prolong the long-term survival of patients with LAGC.


Asunto(s)
Antígeno Carcinoembrionario , Neoplasias Gástricas , Humanos , Antígeno CA-19-9 , Neoplasias Gástricas/patología , Terapia Neoadyuvante , Estudios Retrospectivos , Biomarcadores de Tumor , Carbohidratos
6.
J Am Chem Soc ; 145(33): 18658-18667, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37572057

RESUMEN

Catalytic conversion of toxic nitrogen oxide (NO) and carbon monoxide (CO) into nitrogen (N2) and carbon dioxide (CO2) is imperative under the weight of the increasingly stringent emission regulations, while a fundamental understanding of the nature of the active site to selectively drive N2 generation is elusive. Herein, in combination with state-of-the-art mass-spectrometric experiments and quantum-chemical calculations, we demonstrated that the rhodium-cerium oxide clusters RhCe2O3-5- can catalytically drive NO reduction by CO and give rise to N2 and CO2. This finding represents a sharp improvement in cluster science where N2O is commonly produced in the rarely established examples of catalytic NO reduction mediated with gas-phase clusters. We demonstrated the importance of the unique chemical environment in the RhCe2O3- cluster to guide the substantially improved N2 selectivity: a triatomic Lewis "acid-base-acid" Ceδ+-Rhδ--Ceδ+ site is proposed to strongly adsorb two NO molecules as well as the N2O intermediate that is attached on the Rh atom and can facilely dissociate to form N2 assisted by both Ce atoms.

7.
J Phys Chem Lett ; 14(28): 6431-6436, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37432842

RESUMEN

The introduction of organic ligands is one of the effective strategies to improve the stability and reactivity of metal clusters. Herein, the enhanced reactivity of benzene-ligated cluster anions Fe2VC(C6H6)- with respect to naked Fe2VC- is identified. Structural characterization suggests that C6H6 is molecularly bound to the dual metal site in Fe2VC(C6H6)-. Mechanistic details reveal that the cleavage of N≡N is feasible in Fe2VC(C6H6)-/N2 but hindered by an overall positive barrier in the Fe2VC-/N2 system. Further analysis discloses that the ligated C6H6 regulates the compositions and energy levels of the active orbitals of the metal clusters. More importantly, C6H6 serves as an electron reservoir for the reduction of N2 to lower the crucial energy barrier of N≡N splitting. This work demonstrates that the flexibility of C6H6 in terms of withdrawing and donating electrons is crucial to regulating the electronic structures of the metal cluster and enhancing the reactivity.

8.
Inorg Chem ; 62(29): 11318-11324, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37428555

RESUMEN

Inspired by the fact that Mo is a key element in biological nitrogenase, a series of gas-phase MoxSy- cluster anions are prepared and their reactivity toward N2 is investigated by the combination of mass spectrometry, photoelectron imaging spectroscopy, and density functional theory calculations. The Mo5S2- and Mo5S3- cluster anions show remarkable reactivity compared with the anionic species reported previously. The spectroscopic results in conjunction with theoretical analysis reveal that a facile cleavage of N≡N bonds takes place on Mo5S2- and Mo5S3-. The large dissociative adsorption energy of N2 and the favorable entrance channel for initial N2 approaching are proposed as two decisive factors for the superior reactivity of Mo5S2- and Mo5S3-. Besides, the modulation of S ligands on the reactivity of metal centers with N2 is proposed. The highly reactive metal-sulfur species may be obtained by the coordination of two to three sulfur atoms to bare metal clusters so that an appropriate combination of electronic structures and charge distributions can be achieved.

9.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37349127

RESUMEN

BACKGROUND: Systemic Immune-inflammation Index (SII) and body composition parameters are easily assessed, and can predict overall survival (OS) in various cancers, allowing early intervention. This study aimed to assess the correlation between CT-derived body composition parameters and SII and OS in patients with advanced gastric cancer receiving dual programmed death-1 (PD-1) and human epidermal growth factor receptor 2 (HER2) blockade. MATERIALS AND METHODS: This retrospective study enrolled patients with advanced gastric cancer treated with dual PD-1 and HER2 blockade from March 2019 to June 2022. We developed a deep learning model based on nnU-Net to automatically segment skeletal muscle, subcutaneous fat and visceral fat at the third lumbar level, and calculated the corresponding Skeletal Muscle Index, skeletal muscle density, subcutaneous fat area (SFA) and visceral fat area. SII was computed using the formula that total peripheral platelet count×neutrophil/lymphocyte ratio. Univariate and multivariate Cox regression analysis were used to determine the associations between SII, body composition parameters and OS. RESULTS: The automatic segmentation deep learning model was developed to efficiently segment body composition in 158 patients (0.23 s/image). Multivariate Cox analysis revealed that high SII (HR=2.49 (95% CI 1.54 to 4.01), p<0.001) and high SFA (HR=0.42 (95% CI 0.24 to 0.73), p=0.002) were independently associated with OS, whereas sarcopenia was not an independent prognostic factor for OS (HR=1.41 (95% CI 0.86 to 2.31), p=0.173). In further analysis, patients with high SII and low SFA had worse long-term prognosis compared with those with low SII and high SFA (HR=8.19 (95% CI 3.91 to 17.16), p<0.001). CONCLUSION: Pretreatment SFA and SII were significantly associated with OS in patients with advanced gastric cancer. A comprehensive analysis of SII and SFA may improve the prognostic stratification of patients with gastric cancer receiving dual PD-1 and HER2 blockade.


Asunto(s)
Receptor de Muerte Celular Programada 1 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Estudios Retrospectivos , Grasa Subcutánea , Inflamación
10.
Chemistry ; 29(14): e202203384, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36511849

RESUMEN

We report on cluster-mediated C-N bond formation in the gas phase using N2 as a nitrogen source. The V3 C+ +N2 reaction is studied by a combination of ion-trap mass spectrometry with infrared photodissociation (IRPD) spectroscopy and complemented by electronic structure calculations. The proposed reaction mechanism is spectroscopically validated by identifying the structures of the reactant and product ions. V3 C+ exhibits a pyramidal structure of C1 -symmetry. N2 activation is initiated by adsorption in an end-on fashion at a vanadium site, followed by spontaneous cleavage of the N≡N triple bond and subsequent C-N coupling. The IRPD spectrum of the metal nitride product [NV3 (C=N)]+ exhibits characteristic C=N double bond (1530 cm-1 ) and V-N single bond (770, 541 and 522 cm-1 ) stretching bands.

11.
Mol Cancer ; 21(1): 216, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510184

RESUMEN

At present, there is no validated marker to identify the subpopulation of patients with advanced gastric cancer (AGC) who might benefit from neoadjuvant chemotherapy (NACT). In view of this clinical challenge, the identification of non-invasive biomarkers for efficacy prediction of NACT in patients with AGC is imperative. Herein, we aimed to develop a non-invasive, liquid-biopsy-based assay by using an exosome-derived RNAs model based on multi-omics characteristics of RNAs. We firstly used a multi-omics strategy to characterize the mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) profiles of circulating exosome enriched fractions in responders to NACT paired with non-responders, using RNA sequencing. Finally, numerous miRNAs, mRNAs and lncRNAs were identified to be associated with the response to NACT in patients with AGC, and it was validated in an independent cohort with promising AUC values. Furthermore, we established a 6-exosome-RNA panel that could robustly identified responders from non-responders treated with fluorouracil-based neoadjuvant chemotherapy.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Terapia Neoadyuvante , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , ARN Largo no Codificante/genética , MicroARNs/genética , ARN Mensajero/genética , Biopsia Líquida
12.
Phys Chem Chem Phys ; 24(40): 24950-24958, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36205256

RESUMEN

The activation and transformation of molecular nitrogen (N2) by metal hydride species has attracted widespread attention due to its critical role in nitrogen fixation. Herein, the reactions between tantalum deuteride cluster anions Ta2D2,4- and N2 were investigated experimentally and theoretically. An unprecedented reaction channel of the liberation of a single D atom was observed and much superior reactivity was identified for Ta2D4-. Theoretical investigations indicate that the releasing of D atoms benefits from the completely dissociative adsorption of N2 on the dinuclear metal centres. The extra D atoms in Ta2D4- compared to Ta2D2- are helpful to create sufficient electron density at the adsorption site and modify the symmetry of active orbitals to facilitate a further reduction of N2. This comparative study provides a molecular-level insight to understand the high structure-modulating capability of the additional hydride ligands in polyhydride species in the adsorption and activation of nitrogen molecules.

13.
World J Gastrointest Oncol ; 14(9): 1771-1784, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36187403

RESUMEN

BACKGROUND: There were few studies on the prognosis of tumor patients with sepsis after gastrointestinal surgery and there was no relevant nomogram for predicting the prognosis of these patients. AIM: To establish a nomogram for predicting the prognosis of tumor patients with sepsis after gastrointestinal surgery in the intensive care unit (ICU). METHODS: A total of 303 septic patients after gastrointestinal tumor surgery admitted to the ICU at Peking University Cancer Hospital from January 1, 2013 to December 31, 2020 were analysed retrospectively. The model for predicting the prognosis of septic patients was established by the R software package. RESULTS: The most common infection site of sepsis after gastrointestinal surgery in the ICU was abdominal infection. The 90-d all-cause mortality rate was 10.2% in our study group. In multiple analyses, we found that there were statistically significant differences in tumor type, septic shock, the number of lymphocytes after ICU admission, serum creatinine and total operation times among tumor patients with sepsis after gastrointestinal surgery (P < 0.05). These five variables could be used to establish a nomogram for predicting the prognosis of these septic patients. The nomogram was verified, and the initial C-index was 0.861. After 1000 internal validations of the model, the C-index was 0.876, and the discrimination was good. The correction curve indicated that the actual value was in good agreement with the predicted value. CONCLUSION: The nomogram based on these five factors (tumor type, septic shock, number of lymphocytes, serum creatinine, and total operation times) could accurately predict the prognosis of tumor patients with sepsis after gastrointestinal surgery.

14.
Chem Sci ; 13(32): 9366-9372, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36093004

RESUMEN

The direct coupling of dinitrogen (N2) and methane (CH4) to construct the N-C bond is a fascinating but challenging approach for the energy-saving synthesis of N-containing organic compounds. Herein we identified a likely reaction pathway for N-C coupling from N2 and CH4 mediated by heteronuclear metal cluster anions CoTaC2 -, which starts with the dissociative adsorption of N2 on CoTaC2 - to generate a Ta δ+-Nt δ- (terminal-nitrogen) Lewis acid-base pair (LABP), followed by the further activation of CH4 by CoTaC2N2 - to construct the N-C bond. The N[triple bond, length as m-dash]N cleavage by CoTaC2 - affording two N atoms with strong charge buffering ability plays a key part, which facilitates the H3C-H cleavage via the LABP mechanism and the N-C formation via a CH3 migration mechanism. A novel Nt triggering strategy to couple N2 and CH4 molecules using metal clusters was accordingly proposed, which provides a new idea for the direct synthesis of N-containing compounds.

15.
Inflamm Regen ; 42(1): 44, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163271

RESUMEN

BACKGROUND: Fibrotic scar formation and inflammation are characteristic pathologies of spinal cord injury (SCI) in the injured core, which has been widely regarded as the main barrier to axonal regeneration resulting in permanent functional recovery failure. Pericytes were shown to be the main source of fibroblasts that form fibrotic scar. However, the mechanism of pericyte-fibroblast transition after SCI remains elusive. METHODS: Fibrotic scarring and microvessels were assessed using immunofluorescence staining after establishing a crush SCI model. To study the process of pericyte-fibroblast transition, we analyzed pericyte marker and fibroblast marker expression using immunofluorescence. The distribution and cellular origin of platelet-derived growth factor (PDGF)-BB were examined with immunofluorescence. Pericyte-fibroblast transition was detected with immunohistochemistry and Western blot assays after PDGF-BB knockdown and blocking PDGF-BB/PDGFRß signaling in vitro. Intrathecal injection of imatinib was used to selectively inhibit PDGF-BB/PDGFRß signaling. The Basso mouse scale score and footprint analysis were performed to assess functional recovery. Subsequently, axonal regeneration, fibrotic scarring, fibroblast population, proliferation and apoptosis of PDGFRß+ cells, microvessel leakage, and the inflammatory response were assessed with immunofluorescence. RESULTS: PDGFRß+ pericytes detached from the blood vessel wall and transitioned into fibroblasts to form fibrotic scar after SCI. PDGF-BB was mainly distributed in the periphery of the injured core, and microvascular endothelial cells were one of the sources of PDGF-BB in the acute phase. Microvascular endothelial cells induced pericyte-fibroblast transition through the PDGF-BB/PDGFRß signaling pathway in vitro. Pharmacologically blocking the PDGF-BB/PDGFRß pathway promoted motor function recovery and axonal regeneration and inhibited fibrotic scar formation. After fibrotic scar formation, blocking the PDGFRß receptor inhibited proliferation and promoted apoptosis of PDGFRß+ cells. Imatinib did not alter pericyte coverage on microvessels, while microvessel leakage and inflammation were significantly decreased after imatinib treatment. CONCLUSIONS: We reveal that the crosstalk between microvascular endothelial cells and pericytes promotes pericyte-fibroblast transition through the PDGF-BB/PDGFRß signaling pathway. Our finding suggests that blocking the PDGF-BB/PDGFRß signaling pathway with imatinib contributes to functional recovery, fibrotic scarring, and inflammatory attenuation after SCI and provides a potential target for the treatment of SCI.

16.
Leukemia ; 36(8): 2042-2049, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35650426

RESUMEN

It is vital for physicians and persons with chronic myeloid leukemia (CML) to accurately predict the likelihood of achieving a major molecular response (MMR) and a deep molecular response (DMR; at least MR4) at the start of imatinib-therapy, which could help in decision making of treatment goals and strategies. To answer this question, we interrogated data from 1369 consecutive subjects with chronic phase CML receiving initial imatinib-therapy to identify predictive co-variates. Subjects were randomly-assigned to training (n = 913) and validation (n = 456) datasets. Male sex, higher WBC concentration, lower haemoglobin concentration, higher percentage blood blasts and larger spleen size were significantly-associated with lower cumulative incidences of MMR and MR4 in training dataset. Using Fine-Gray model, we developed the predictive scoring systems for MMR and MR4 which classified subjects into the low-, intermediate- and high-risk cohorts with significantly-different cumulative incidences of MMR and MR4 with good predictive discrimination and accuracy in training and validation cohorts with high area under the receiver-operator characteristic curve (AUROC) values. These data may help physicians decide appropriateness of initial imatinib therapy.


Asunto(s)
Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide de Fase Crónica , Antineoplásicos/uso terapéutico , Humanos , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mieloide de Fase Crónica/tratamiento farmacológico , Leucemia Mieloide de Fase Crónica/genética , Masculino , Inhibidores de Proteínas Quinasas/uso terapéutico , Resultado del Tratamiento
17.
Phys Chem Chem Phys ; 24(23): 14616-14622, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35670100

RESUMEN

The reverse water-gas shift (RWGS, CO2 + H2 → CO + H2O, ΔH298 = +0.44 eV) reaction mediated by the diatomic anion Rh2- was successfully constructed. The generation of a gas-phase H2O molecule and ion product [Rh2(CO)ads]- was identified unambiguously at room temperature and the only elementary step that requires extra energy to complete the catalysis is the desorption of CO from [Rh2(CO)ads]-. This experimentally identified Rh2- anion represents the first gas-phase species that can drive the RWGS reaction because it is challenging to design effective routes to yield H2O from CO2 and H2. The reactions were performed by using our newly developed double ion trap reactors and characterized by mass spectrometry, photoelectron spectroscopy, and high-level quantum-chemical calculations. We found that the order that the reactants (CO2 or D2) were fed into the reactor did not have a pronounced impact on the reactivity and the final product distribution (D2O and Rh2CO-). The atomically precise insights into the key steps to guide the reaction toward the RWGS direction were provided.

18.
J Phys Chem Lett ; 13(18): 4159-4169, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35507918

RESUMEN

Understanding the mechanisms to activate and functionalize dinitrogen (N2) is of great importance for the rational design of nitrogen-fixation catalysts. Reactions of gas-phase species with N2 are being actively studied to understand the bond activation and formation processes at a strictly molecular level. This Perspective provides an overview of the recent progress in combined experimental and theoretical studies on the activation and functionalization of N2 by gas-phase metal species. New mechanistic insights into N2 molecular adsorption, N≡N cleavage, and N-X (X = C, B, and H) formation have been introduced, in which the new reaction channels of ejecting neutral metal fragments and the coupling reactions of N2 with other molecules are highlighted. Finally, the current challenges and outlooks of N2 activation in the gas phase are discussed as well.

19.
J Chem Phys ; 156(6): 064303, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35168360

RESUMEN

Nitrogen (N2) fixation is a challenging task for chemists. Adsorption of N2 on transition metal (TM) sites has been identified as a prerequisite for activating the very stable N≡N triple bond in both industrial and biological processes. The importance of π back-donation (filled orbitals of TM → π* orbitals of N2) between metal sites and N2 has been well elucidated while the role of another classic orbital interaction, namely σ donation (σ orbitals of N2 → empty orbitals of TM), remains ambiguous. Herein, the size-dependent reactivity of trinuclear rhodium deuteride cluster anions Rh3Dn - (n = 0-3) toward N2 adsorption in the gas phase was investigated experimentally and theoretically. A reverse relationship that higher electron-donating ability of clusters corresponds to lower N2 adsorption reactivity was experimentally observed, which is uncommon in N2 activation by gas-phase species. Theoretical analysis revealed that the σ donation rather than the π back-donation plays a predominant role in the adsorption complexes Rh3DnN2 - and the enhanced reactivity upon D addition is ascribed to the lowered energy levels of active orbitals in Rh3Dn - as n increases. This study provides the first experimental evidence to declare the important role of σ donation and new clues for the design of reactive metal species in nitrogen fixation.

20.
J Phys Chem A ; 126(9): 1511-1517, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35226501

RESUMEN

Alkali atoms are usually used as promoters to significantly increase the catalytic activity of transition-metal catalysts in a wide range of reactions such as dinitrogen conversion reactions. However, the role of alkali metal atoms remains controversial. Herein, a series of quaternary cluster anions containing lithium atoms Nb2LiNO1-4- have been synthesized and reacted with N2 at room temperature. The detailed experimental and theoretical investigations indicate that Nb2LiNO- is capable to cleave the N≡N bond and the Li atoms in Nb2LiNO1,2- act as electron donors in the N2 reduction reaction. With the increase in the number of oxygen atoms, the reactivity toward N2 is reduced from adsorption via a side-on end-on mode in Nb2LiNO2- to the inertness of Nb2LiNO4-. In Nb2LiNO3,4- anions, the Li atoms are bonded with oxygen atoms, acting as structural units to stabilize structures. Therefore, the roles of alkali atoms are able to change with different chemical environments of active sites. For the first time, we reveal how the number of ligands (oxygen atoms herein) can be used to finely regulate the reactivity toward N2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...